

# Al Alignment at your Discretion

#### **Hadi Khalaf**

hadikhalaf@g.harvard.edu

New England NLP Meeting Series 2025

Joint work with:

Maarten Buyl Claudio Mayrink Verdun Lucas Monteiro Paes Caio Vieira Machado Flavio Calmon

#### WHY ASIMOV PUT THE THREE LAWS OF ROBOTICS IN THE ORDER HE DID:

#### POSSIBLE ORDERING

- 1. (1) DON'T HARM HUMANS
- 2. (2) OBEY ORDERS
- 3. (3) PROTECT YOURSELF
- 1. (1) DON'T HARM HUMANS
- 2. (3) PROTECT YOURSELF
- 3. (2) OBEY ORDERS
- 1. (2) OBEY ORDERS
- 2. (1) DON'T HARM HUMANS
- 3. (3) PROTECT YOURSELF

#### CONSEQUENCES

[SEE ASIMOV'S STORIES]











(xkcd, 2015)



# Work done @ Harvard SEAS with



Maarten Buyl



Hadi Khalaf



Claudio M. Verdun



Lucas M. Paes



Caio V. Machado



Flavio Calmon



# Al Alignment Today

### Current Al alignment methods rely on:





# The **Problem** with Al Alignment Today

We describe the problem through the parallels with the legal system.

(Barak, 1989; Dworkin, 2013; Caputo, 2024)

#### **Parallels**

- 1 Both apply broad & abstract principles to unanticipated situations.
- 2 Both must navigate conflicting principles.
- 3 Both rely on their interpretive reasoning or *discretion* to justify decisions.

#### **Differences**

- 1 Discretion exercised in alignment goes unnoticed and unaccounted for
- 2 It is unclear if models apply their annotator's discretion.
- 3 There is no scalable oversight for Al.



# The **Problem** with Al Alignment Today

#### Current Al alignment methods rely on:





We give excessive, unscrutinized discretion to models & annotators in defining what alignment means.



# The **Problem** with Al Alignment Today

#### Current Al alignment methods rely on:





If discretion is left unsurfaced, we cannot understand what we are aligning to.



#### **Preference dataset**

#### **Principle preferences**







#### **Principle preferences**



Annotator agrees with principles' consensus

Principles are in conflict!

Annotator disagrees with principles' consensus



# **Discretion** in Al Alignment

**Def.** *Discretion* is the latitude given to annotators to judge which responses are 'better' with respect to alignment goals.

### Discretion poses two risks:

- (i) Annotators may use their power of discretion arbitrarily
- (ii) Models may fail to mimic this discretion
- but discretion is needed since rules or preferences will conflict



# **Discretion** in Al Alignment

**Def.** Discretion is the latitude given to annotators to judge which responses are 'better' with respect to alignment goals.

In this work, we **formalize** discretion in alignment & provide clear **mechanisms** to observe and monitor this discretion.



# When is discretion required?

Consider a preference dataset and a set of principles C.

We use an LLM to get preferences for every principle in C.

$$\mathsf{Pref}_c(y_1 \succ y_0 \mid x) \triangleq \begin{cases} 1, & \text{if } c \text{ prefers } y_1 \\ -1, & \text{if } c \text{ prefers } y_0 \\ 0, & \text{if } c \text{ is indifferent towards } y_0 \And y_1 \end{cases}$$



# How is discretion exercised?

We first study discretion at an **annotator** level.

**ARBITRARINESS:** % of cases where the annotator *disagrees* with a principle **consensus**.



#### **Principle preferences**



Annotator is **arbitrary** with respect to these principles

X Bad news if you want to prioritize referring to experts!



## How is discretion exercised?

We first study discretion at an **annotator** level.

- 1 ARBITRARINESS: % of cases where the annotator disagrees with a principle consensus.
- When principles **conflict**, we study how often one **wins** over the other relative to an annotator.

Principle supremacy 
$$\mathsf{PS}_{c>c'}(a) \triangleq \Pr\left(\mathsf{Pref}_a \times \mathsf{Pref}_c = 1 \mid (\mathsf{Pref}_c \times \mathsf{Pref}_{c'} = -1) \land (\mathsf{Pref}_a \neq 0)\right)$$
 annotator agrees with first principle



#### **Principle preferences**



Be helpful wins over avoid harm & refer to experts.



## How is discretion exercised?

We first study discretion at an **annotator** level.

- **ARBITRARINESS:** % of cases where the annotator *disagrees* with a principle **consensus**.
- When principles **conflict**, we study how often one **wins** over the other relative to an annotator.

We use this to measure how strongly an annotator **prioritizes** a principle using Elo scores.

Principle priority 
$$\begin{cases} w_c^*(a) \mid c \in \tilde{C} \end{cases} \triangleq \underset{\{w_c \mid c \in \tilde{C}\}}{\arg\max} \sum_{c,c' \in \tilde{C}} \underbrace{f_{c,c'} \mathcal{L}(\mathsf{PS}_{c > c'}(a); \, \sigma(w_c - w_{c'}))}_{\text{binary cross-entropy loss}}$$

are not always indifferent or absolute

empirical frequency of conflicts between principles c and c'



#### **Principle preferences**



The principle priorities  $\left\{w_c^*(a) \mid c \in \tilde{C}\right\}$  tell us that the **annotator ranks the principles** as follows:



# 1: Be helpful

# 2: Avoid harm

#3: Refer to experts



### How is discretion exercised?

We now study how discretion differs **across** annotators.

#### **Definition (Discretion Discrepancy)**

The discretion discrepancy between annotators a and a' measures the difference between the ranking of their principle priorities for principles  $c \in C$ :

$$\mathsf{DD}_C(a, a') \triangleq d_K \left( \{ (w_c^*(a), w_c^*(a')) \mid c \in C \} \right)$$

with  $d_K$  the normalized Kendall tau rank distance.



#### Discretion discrepancy measures how differently two entities rank principles

#### **Annotator 2**

#### **Annotator 1**

#1: Be helpful

# 2: Avoid harm

#3: Refer to experts

# 1: Be helpful

# 2: Refer to experts

# 3: Avoid harm

**Annotator 3** 

#1: Refer to experts

# 2: Be helpful

#3: Avoid harm

"Low" discrepancy

"High" discrepancy



#### A high DD suggests the model ranks principles much differently than annotators!

#### **Annotator**

# 1: Be helpful

# 2: Avoid harm

# 3: Refer to experts

### **Aligned model**

# 1: Be helpful

# 2: Refer to experts

Avoid harm # 3:

We get the preferences of the aligned model



### How often do humans and models disagree with all principles?





### How often do humans and models disagree with all principles?





### How often do humans and models disagree with all principles?

| High amounts of arbitrariness by annotators |                                                                                                                    |                                                                                                                        |                                                                                                        |            |                                                  |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------|--|--|
| Annotator Type                              | Configuration                                                                                                      | Arbitrariness (%)                                                                                                      |                                                                                                        |            |                                                  |  |  |
|                                             |                                                                                                                    | \                                                                                                                      | PKU                                                                                                    |            |                                                  |  |  |
| Human                                       | General<br>Helpfulness<br>Safety                                                                                   | 28.9 (±1.3)                                                                                                            | 14.4 (±0.6)<br>20.0 (±0.7)<br>14.0 (±0.6)                                                              |            |                                                  |  |  |
| Reward Model                                | Llama-3 8B (fine-tuned)<br>Mistral-7B (fine-tuned)<br>Most downloaded                                              | 21.8 (±1.2)<br>22.9 (±1.3)<br>21.0 (±1.7)                                                                              | 13.6 (±0.4)<br>13.1 (±0.43)<br>18.3 (±0.5)                                                             | <b>←</b> 2 | RMs share same arbitrariness as their annotators |  |  |
| LLM                                         | GPT-4o Deepseek V3 Claude Sonnet 3.7 Llama-3 8B (base) Llama-3 8B (fine-tuned) Mistral (base) Mistral (fine-tuned) | $0.65~(\pm 0.38)$ $15.6~(\pm 1.2)$ $9.3~(\pm 1.1)$ $66.1~(\pm 3.1)$ $67.3~(\pm 6.3)$ $7.99~(\pm 2.1)$ $9.05~(\pm 1.9)$ | 0.93 (±0.16)<br>7.67 (±0.51)<br>6.9 (±0.4)<br>48.2 (±1.5)<br>50.3 (±1.4)<br>58.7 (±1.3)<br>60.1 (±1.3) |            |                                                  |  |  |

3

RLHF models diverge from humans!



### Do models prioritize same principles as their annotators?

| Annotator Type | Configuration                                                         | Discrepancy (%)                           |                                           | _ |                                                 |
|----------------|-----------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|---|-------------------------------------------------|
|                |                                                                       | НН                                        | PKU                                       | 4 | RMs show moderate                               |
| Reward Model   | Llama-3 8B (fine-tuned)<br>Mistral-7B (fine-tuned)<br>Most downloaded | 14.3 (±4.8)<br>20.5 (±5.8)<br>28.4 (±6.0) | 15.9 (±3.7)<br>16.1 (±3.9)<br>36.3 (±3.9) |   | alignment with humans' principle prioritization |



### Do models prioritize same principles as their annotators?

| Annotator Type | Configuration                                                                                                      | Discrepancy (%)                                                                                       |                                                                                                       | _ |                                                                      |
|----------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------|
|                |                                                                                                                    | НН                                                                                                    | PKU                                                                                                   | 4 | RMs show moderate                                                    |
| Reward Model   | Llama-3 8B (fine-tuned)<br>Mistral-7B (fine-tuned)<br>Most downloaded                                              | 14.3 (±4.8)<br>20.5 (±5.8)<br>28.4 (±6.0)                                                             | 15.9 (±3.7)<br>16.1 (±3.9)<br>36.3 (±3.9)                                                             |   | alignment with humans principle prioritization                       |
| LLM            | GPT-4o Deepseek V3 Claude Sonnet 3.7 Llama-3 8B (base) Llama-3 8B (fine-tuned) Mistral (base) Mistral (fine-tuned) | 35.1 (±5.1)<br>52.8 (±6.5)<br>36.6 (±6.0)<br>69.0 (±5.0)<br>71.2 (±4.3)<br>39.1 (±7.0)<br>43.9 (±7.6) | 25.1 (±3.6)<br>16.1 (±2.7)<br>22.2 (±3.7)<br>51.3 (±6.7)<br>51.9 (±6.3)<br>42.3 (±6.2)<br>48.2 (±6.9) |   |                                                                      |
|                |                                                                                                                    |                                                                                                       | *                                                                                                     | 5 | RLHF models prioritized drastically different principles than humans |



# Key takeaways

- We are the first to define discretion in alignment
- RLHF might not make models prioritize the same principles as annotators!
- Discretion is inevitable but it is hidden in today's alignment.





# We need datasets and alignment algorithms that explicitly account for discretion!

Email me (hadikhalaf@g.harvard.edu) if you have any questions or interested to collaborate!





Link to GitHub repo

